
HypoPG2: Hypothetical Partitioning support
for PostgreSQL

PgConf.Russia 2019
Feb. 6th

Julien Rouhaud

• Julien Rouhaud (From Paris, France)
⁃ Working on HypoPG, POWA and some contribution to PostgreSQL

• Yuzuko Hosoya (From Tokyo, Japan)
⁃ NTT Open Source Software Center

⁃ Working on HypoPG

⁃ Interested in Partitioning/Planner

Who worked on HypoPG 2?

I. Introduction of HypoPG

II. Why Hypothetical Partitioning?

III. Usage & Architecture of Hypothetical Partitioning

IV. Demo

V. Future Works

VI. Summary

Agenda

Introduction of HypoPG

Introduction of HypoPG

Latest version HypoPG 2.0.0beta

Support PostgreSQL 9.2 and above (pg10+ for hypothetical
partitioning)

Github https://github.com/HypoPG/hypopg

Documentation https://hypopg.readthedocs.io

https://github.com/HypoPG/hypopg
https://hypopg.readthedocs.io/

• Supports hypothetical Indexes

• Allows users to define hypothetical indexes on real tables
and data

• If hypothetical indexes are defined on a table, planner considers them
along with any real indexes

• Outputs queries’ plan/cost with EXPLAIN as if hypothetical indexes
actually existed

• Helps index design tuning

HypoPG 1.X

• Multiple months of work!
• Original idea from Hosoya Yuzuko

• Supports hypothetical partitioning (PostgreSQL 10 and above)

• Allows users to try/simulate different hypothetical partitioning schemes

on real tables and data

• Outputs queries’ plan/cost with EXPLAIN using hypothetical partitioning

schemes

• Helps partitioning design tuning

HypoPG 2 (beta is available!)

Why Hypothetical Partitioning?

• Declarative Partitioning was introduced in PostgreSQL 10

• Improved in all new versions

PostgreSQL Partitioning

v10 v11v9.6 v12

Partitioning by combination
of following features
⁃ Table Inheritance
⁃ Check Constraint
⁃ Trigger

Declarative Partitioning was introduced
⁃ Partitioning enabled by

CREATE TABLE statement
⁃ RANGE/LIST Partitioning

Many enhancements of partitioning
⁃ HASH Partitioning
⁃ Partitioned Index
⁃ Default Partition
⁃ Faster Partition Pruning
⁃ Partitionwise Join/Aggregation

⁃ Improvement
planning for
partitioning

and so on

• The most IMPORTANT factor affecting query performance over
a partitioned table is partitioning schemes

✓ Which tables to be partitioned

✓ Which strategy to be chosen

✓ Which columns to be specified as a partition key

✓ How many partitions to be created

Query Performance and
Partitioning Schemes

• Do not scan unnecessary partitions to reduce data size to be read from the
disk

Partition Pruning

January

December

12 partitions

orders

SELECT * FROM orders WHERE date=‘January’;

Scanned

NOT
Scanned

• Do not scan unnecessary partitions to reduce data size to be read from the
disk

• Optimal partitioning Scheme:
Partition by the column specified in WHERE clause

Partition Pruning

January

December

12 partitions

orders

Partition
by

date

SELECT * FROM orders WHERE date=‘January’;

• Joining pairs of partitions might be faster than joining large tables

Partitionwise Join

SELECT c.name FROM orders o LEFT JOIN customers c
ON o.cust_id = c.cust_id where o.date = ‘September’;

orders customers

1-1000

5001-6000

1-1000

5001-6000

• Joining pairs of partitions might be faster than joining large tables

• Optimal partitioning scheme:
Partitioned by the column specified in JOIN clause

Partitionwise Join

SELECT c.name FROM orders o LEFT JOIN customers c
ON o.cust_id = c.cust_id where o.date = ‘September’;

orders customers

1-1000

5001-6000

1-1000

5001-6000Partition
by

cust_id

Partition
by

cust_id

• Performing aggregation per partition and combining them might be faster than
performing aggregation on large table

Partitionwise Aggregation

January

December

orders

SELECT date, sum(price) FROM orders GROUP BY date;

Agg

Agg

• Performing aggregation per partition and combining them might be faster than
performing aggregation on large table

• Optimal partitioning scheme:
Partitioned by the column specified in GROUP BY clause

Partitionwise Aggregation

SELECT date, sum(price) FROM orders GROUP BY date;

January

December

orders

Partition
by

date

• Assume this situation

Question:
How do you partition these tables?

orders customers

SELECT * FROM orders WHERE date=‘January’;

SELECT c.name FROM orders o LEFT JOIN customers c
ON o.cust_id = c.cust_id where o.date = ‘September’;

Partition
by

cust_id?

Partition
by

date?

Partition
by

order_id?

• There are often multiple choices on partitioning schemes

• Queries’ plan/cost are largely affected by data size and parameter settings

It’s VERY HARD …

• There are often multiple choices on partitioning schemes

• Query plan/cost are largely affected by data size and parameter settings

It’s VERY HARD …

Do you want to know how your queries would
behave before actually partitioning tables?

• You can quickly check how your queries would behave if certain tables were
partitioned without actually partitioning any tables and wasting any resources
or locking anything

• You can try different partitioning schemes in a short time

Hypothetical Partitioning is Helpful!

Usage & Architecture
of Hypothetical Partitioning

• Need to have an actual plain table

• Create hypothetical partitioning schemes using following function:

For hypothetical partitioned table

For hypothetical partitions
NOTE: the 3rd argument is only for subpartitioning

How to Create
Hypothetical Partitioning Schemes

hypopg_partition_table
(‘table_name’, ‘PARTITION BY strategy(column)’)

hypopg_add_partition
(‘table_name’,
‘PARTITION OF parent FOR VALUES partition_bound’,
‘PARTITION BY strategy(column)’)

• HASH partitioning (simple example, no subpartition)

For each partition

• get its modulus

• compute the total fraction of the root table that should be in the given partition

• Example

• CREATE TABLE t1 … FOR VALUES WITH (MODULUS 10, REMAINDER 1)

• CREATE TABLE t2 … FOR VALUES WITH (MODULUS 5, REMINDER 2)

• Partition t1 would have 10% of all rows

• Partition t2 would have 20% of all rows

How to Estimate Cost/Rows

• RANGE/LIST partitioning (simple example, no subpartition)

For each partition

• get the partition’s constraint

• compute the selectivity for those constraints

• Example

• CREATE TABLE t1 … FOR VALUES FROM (1) TO (10)

• the constraints are
id >= 1 AND id < 10

• estimate this predicate using standard PostgreSQL selectivity
functions

How to Estimate Cost/Rows

• This approach can lead to very bad estimates in some cases

(list partitioning, subpartitioning, complex partitioning expressions…)

• We added a function to compute accurate statistics according to the defined partitioning scheme:
hypopg_analyze()

• We also store the number of estimated rows in each partition during the process

• Be careful, this has to be explicitly called!

(there’s no autovacuum for hypopg_analyze)

But this has defaults!

• Create hypothetical statistics for hypothetical partitions using following function:

• The table specified in the first argument of this function must be a root table

• Statistics of all leaf partitions, which are related to the given table, are created

How to Create Hypothetical Statistics

hypopg_analyze
(‘table_name’, percentage for sampling)

• For each partition, get the partition bounds including its ancestors if any

How hypopg_analyze() Works

January

December

orders February

1-1000

1000-2000

partition bound:
date = ‘January’ ,
cust_id >= 1 AND
cust_id < 1000

hypopg_analyze(‘orders’, 70);

partition
by date

partition
by cust_id

• For each partition, get the partition bounds including its ancestors if any

• Generate a WHERE clause according to the partition bound

How hypopg_analyze() Works

January

December

orders February

1-1000

1000-2000

partition bound:
date = ‘January’ and
cust_id >= 1 and
cust_id < 1000

WHERE
date = ‘January’ AND
cust_id >= 1 AND
cust_id < 1000

hypopg_analyze(‘orders’, 70);

partition
by date

partition
by cust_id

• For each partition, get the partition bounds including its ancestors if any

• Generate a WHERE clause according to the partition bound

• Compute stats for sampling data got by TABLESAMPLE and the WHERE clause

How hypopg_analyze() Works

partition bound:
date = ‘January’ and
cust_id >= 1 and
cust_id < 1000

WHERE
date = ‘January’ AND
cust_id >= 1 AND
cust_id < 1000

hypopg_analyze(‘orders’, 70);

January

December

orders February

1-1000

1000-2000

partition
by date

partition
by cust_id

Get sampling data from a target table according to percentage

✓Two kinds of sampling method

⁃ SYSTEM: pick data by the page

⁃ BERNOULLI: pick data by the row

✓ Specify WHERE clause

eliminate data that doesn’t satisfied WHERE condition

TABLESAMPLE Clause

SELECT select_expression FROM table_name
TABLESAMPLE sampling_method(percentage) WHERE condition

sampling filtering

target
table

• For each partition, get the partition bounds including its ancestors if any

• Generate a WHERE clause according to the partition bound

• Compute stats for sampling data got by TABLESAMPLE and the WHERE clause

How hypopg_analyze() Works

partition bound:
date = ‘January’ and
cust_id >= 1 and
cust_id < 1000

WHERE
date = ‘January’ AND
cust_id >= 1 AND
cust_id < 1000

sampling filtering

Compute Stats

orders

hypopg_analyze(‘orders’, 70);

January

December

orders February

1-1000

1000-2000

partition
by date

partition
by cust_id

• hypopg_analyze() won’t retrieve constraints for a hash partition

• instead,

• sum the fractions of rows each level of partition defined with a hash partitioning scheme

• do a simple ratio of the previously computed values (for all non-hash partitions)

Exception

RANGE
HASHcomputed by

hypopg_analyze()
computed by

modulus

Architecture

HypoPG uses four kinds of hooks
(five kinds of hooks for PostgreSQL 10)

T
T

T1 T3T2
stat

stat stat stat

EXPLAIN

Query Plan

PostgreSQL HypoPG

Actual Hypothetical

Table OID

Hypothetical
Scheme/
Statistics

Architecture

Using ProcessUtility_hook, HypoPG detects an EXPLAIN without
ANALYZE option and saves it in a local flag for following steps

T
T

T1 T3T2
stat

stat stat stat

EXPLAIN

Query Plan

PostgreSQL HypoPG

Actual Hypothetical

Table OID

Hypothetical
Scheme/
Statistics

1

Architecture

Using get_relation_info_hook, hypothetical partitioning scheme is
injected if the target table is partitioned hypothetically. This
involve modifying a lot of internal structure to make them identical
to what real partitioning would have generated.

T
T

T1 T3T2
stat

stat stat stat

EXPLAIN

Query Plan

PostgreSQL HypoPG

Actual Hypothetical

Table OID

Hypothetical
Scheme/
Statistics

2

Architecture

Using get_relation_stats_hook, hypothetical statistics are injected
to estimate correctly if they were created in advance

T
T

T1 T3T2
stat

stat stat stat

EXPLAIN

Query Plan

PostgreSQL HypoPG

Actual Hypothetical

Table OID

Hypothetical
Scheme/
Statistics

3

Architecture

(for PostgreSQL 10)
Using set_rel_pathlist_hook, a partition which is need not be
scanned is marked as dummy for partition pruning

T
T

T1 T3T2
stat

stat stat stat

EXPLAIN

Query Plan

PostgreSQL HypoPG

Actual Hypothetical

Table OID

Hypothetical
Scheme/
Statistics

3’

dummy dummy

Architecture

Using ExecutorEnd_hook, the EXPLAIN flag is removed.
Finally a query plan using hypothetical partitioning schemes is
displayed!!

T
T

T1 T3T2
stat

stat stat stat

EXPLAIN

Query Plan

PostgreSQL HypoPG

Actual Hypothetical

Table OID

Hypothetical
Scheme/
Statistics

4

DEMO

• Create a hypothetical partitioning scheme and execute some simple queries

⁃ A simple customers table to be partitioned actually:

⁃ A simple orders table to be partitioned hypothetically:
NOTE: for convenience, this table is named **hypo_**orders to quickly identify it in the
plans.

DEMO time!

customers (cust_id integer PRIMARY KEY,
name TEXT, address TEXT)

hypo_orders (orders_id int PRIMARY KEY,
cust_id int, price int, date date)

• Simulate RANGE/LIST/HASH Partitioning

• Simulate SELECT queries
Partition Pruning, Partitionwise Join/Aggregation,
N-way Join, Parallel Query

• Simulate INSERT queries

• Simulate multi-level hypothetical partitioning

• Simulate a default partition (which can also be partitioned)

• Simulate indexes on hypothetical partitions
Both actual and hypothetical indexes

What You Can Do

• Only for plain tables, not on already partitioned tables
Inheritance based and declarative partitioning

• Table name can’t be changed in explain, an alias is used instead to show the
hypothetical partition name

• Do not support UPDATE/DELETE queries

• Do not support PostgreSQL 12 yet

Limitations

Future Works & Summary

• Have a better integration in PostgreSQL core to ease our limitations
- Support UPDATE/DELETE queries
- Support already partitioned tables

• Support PostgreSQL 12 (and future versions)

• Add automated advisor feature
pg_qualstats can help to find columns used in all queries on a given table if
any

What’s next?

HypoPG2 supports hypothetical partitioning

⁃ Allows users to try/simulate different hypothetical partitioning schemes

on real tables and data

⁃ Outputs queries’ plan/cost with EXPLAIN using hypothetical partitioning

schemes

Hypothetical partitioning helps you all to design partitioning
schemes

⁃ You can quickly check how your queries would behave if certain tables

were partitioned without actually partitioning any tables and wasting any

resources

⁃ You can try different partitioning schemes in a short time

We’d be happy to have some feedbacks!

Summary

THANK YOU!
Any questions?

Julien Rouhaud

rjuju123@gmail.com

@rjuju123

Yuzuko Hosoya

hosoya.yuzuko@lab.ntt.co.jp

@pyyycha

mailto:rjuju123@gmail.com
mailto:hosoya.yuzuko@lab.ntt.co.jp

